[hal-00860318, v1] Magnetic Neumann Laplacian on a sharp cone

نویسندگان

  • V. Bonnaillie-Noël
  • N. Raymond
چکیده

This paper is devoted to the spectral analysis of the Laplacian with constant magnetic field on a cone of aperture α and Neumann boundary condition. We analyze the influence of the orientation of the magnetic field. In particular, for any orientation of the magnetic field, we prove the existence of discrete spectrum below the essential spectrum in the limit α → 0 and establish a full asymptotic expansion for the n-th eigenvalue and the n-th eigenfunction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Neumann Laplacian on a sharp cone

This paper is devoted to the spectral analysis of the Laplacian with constant magnetic field on a cone of aperture α and Neumann boundary condition. We analyze the influence of the orientation of the magnetic field. In particular, for any orientation of the magnetic field, we prove the existence of discrete spectrum below the essential spectrum in the limit α → 0 and establish a full asymptotic...

متن کامل

Magnetic Laplacian in sharp three dimensional cones

The core result of this paper is an upper bound for the ground state energy of the magnetic Laplacian with constant magnetic field on cones that are contained in a half-space. This bound involves a weighted norm of the magnetic field related to moments on a plane section of the cone. When the cone is sharp, i.e. when its section is small, this upper bound tends to 0. A lower bound on the essent...

متن کامل

Peak power in the 3D magnetic Schrödinger equation

This paper is devoted to the spectral analysis of the magnetic Neumann Laplacian on an infinite cone of aperture α. When the magnetic field is constant and parallel to the revolution axis and when the aperture goes to zero, we prove that the first n eigenvalues exist and admit asymptotic expansions in powers of α.

متن کامل

Nonexistence and existence results for a 2$n$th-order $p$-Laplacian discrete Neumann boundary value problem

This paper is concerned with a 2nth-order p-Laplacian difference equation. By using the critical point method, we establish various sets of sufficient conditions for the nonexistence and existence of solutions for Neumann boundary value problem and give some new results. Results obtained successfully generalize and complement the existing ones.

متن کامل

Strong Diamagnetism for General Domains and Applications

We consider the Neumann Laplacian with constant magnetic field on a regular domain. Let B be the strength of the magnetic field, and let λ1(B) be the first eigenvalue of the magnetic Neumann Laplacian on the domain. It is proved that B 7→ λ1(B) is monotone increasing for large B. Combined with the results of [FoHe2], this implies that all the ‘third’ critical fields for strongly Type II superco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013